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Mathematical Physics LTH, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

Introduction

One can obtain information about a quantum mechanical spectrum from cer-
tain classical orbits (trajectories). This is called periodic orbit theory, which
we abbreviate here with POT.

An early example of POT with connection to the house!

The famous model by Bohr which led to the formula for the hydrogen
spectrum [1] was an early example of POT. Even though Bohr’s assump-
tion about (only) circular orbits and his assumption about the quantiza-
tion of the angular momentum were incorrect, the errors canceled and
he obtained the same spectrum as the one given by the Schrödinger
equation.
This whim of fate might have been
an important historical coincidence for
the development of quantum mechan-
ics, which then proceeded through the
successful comparison with the ex-
perimental spectra. The success of
Bohr’s model shows that quantum me-
chanical properties can sometimes be
well described by only a few impor-
tant classical periodic orbits, the circu-
lar orbits in Bohr’s case.
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POT for metal clusters

After theoretical developments of
POT, especially in the 70’s, POT
could successfully explain the super
shell structure seen in metal clusters
[2]. In this case, where the mean-field
potential for the valence electrons
is close to a spherical hard wall po-
tential, the major components in the
gross shell structure are determined
by two classical periodic orbits the
triangular and square.

POT for trapped Fermi gases

Inspired by the analysis of
metal clusters, we have in-
vestigated the recently de-
veloped systems of ultra-
cold trapped atomic Fermi
gases. To be more spe-
cific we have investigated
the shell structure of spher-
ical three-dimensional har-
monically trapped weakly re-
pulsive Fermi gases. The
Hamiltonian for short-range
two body interaction is

10 20 30 40 50 60 70 80 90 100
−700

−600

−500

−400

−300

−200

−100

0

100

200

300

N1/3

E
os

c

H =

N
∑

i=1

(

p
2
i

2m
+
m

2
ω2

r
2
i

)

+
4πh̄2a

m

∑

i<j

δ3 (ri − rj) , (1)

where due to the Pauli principle the s-wave
interaction only occurs between two different
spin-states, spin up and down, say. By intro-
ducing an effective coupling strength param-
eter g = 4πh̄2a/m and assuming two equally
populated spin-states, we are led to the follow-
ing Hartree-Fock equations, which we solve
self-consistently
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Within the Hartree-Fock framework we have observed a clear super
shell structure [3] in the oscillating part of the total energy as a func-
tion of the cubic root of the number of particles. The Fourier spectra
indicates that the structure is dominated by two frequencies. We have
shown that they correspond to diameter and circle orbits.

Trace formulae for broken SU(3)-symmetry

We have modelled the HF mean-field potential by a quartic perturbed har-
monic oscillator (HO)

Vmodel =
1

2
mω2r2 +

ε

4
r4, ε > 0. (3)

We first explained the super shell structure from the HF calculations qualita-
tively [3] with semi-classical perturbation theory due to Creagh [4], applied
to the potential Vmodel. We have calculated a modulation factor M for the
trace formula describing the oscillating part of the level density gosc of the
unperturbed HO system, corresponding to non-interacting fermions

gpert.osc (E) =
E2

2 (h̄ω)3 Re





∞
∑

k=−∞

(−1)kM (kσ/h̄) ei2πkE/h̄ω



 . (4)

We have also developed a uniform trace formula which is valid for arbitrary
values of ε [5]
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∞
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k (e) sin (kScirc. (e) /h̄)
]

, (5)

where the Ak’s and S’s can be given in terms of elliptic integrals.

Figure caption: The upper figure shows
the perturbed trace formula Eq. (4),
dashed red, the uniform trace formula
Eq. (5), solid blue, for the case of
ε = 0.005. The dotted cyan curve is
the amplitude of the unperturbed sys-
tem. In the lower figure we can see a
comparison between the uniform trace
formula Eq. (5), solid blue, and the nu-
merically calculated quantum mechani-
cal level density, dashed red.
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HF mean-field potential vs Model potential

To make contact between the HF (2) re-
sults and the model potential (3), we
use an analytical g-dependent Thomas-
Fermi particle density and then fit ω and
ε in (3) to a mean-field model potential. 0 2 4 6 8 10 12
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We have managed to reproduce the
HF level density for weakly interacting
fermions. This leads to a qualitative un-
derstanding of the super shell structure
seen in the oscillating part of the total en-
ergy. 0 10 20 30 40 50
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Conclusion

The gross shell structure of a perturbed three-dimensional harmonic oscilla-
tor has super shells. The super shell structure is to a high accuracy repro-
duced by only two classical periodic orbits, the diameter and circle [5]. The
super shells in the level density of the quartic perturbed harmonic oscillator
explains qualitatively the super shells in the oscillating part of the total energy
from a Hartree-Fock calculation. More details can be found in [6].
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