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Motivationg
Dissociation of a BEC of molecular
dimers can produce pair-correlated
atomic ensembles, with either
fermionic or bosonic atom statistics,
experiment e.g. at JILA [1].
Questions:
• How does the spatial inhomogene-
ity of the molecular BEC affects the
strength of atom-atom correlations?
• What is the correlation width?

Due to momen-
tum conservation
the two atoms are
of equal but oppo-
site momenta, −k

and k.
We compare our results for non-
uniform initial molecular BEC with
those obtained in idealised uniform
systems.

Effective Quantum Field
Theory Model

The coupled molecular (Ψ̂0) and
atomic (Ψ̂σ) fields can be described by
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∫

dx
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where σ =↑, ↓ denotes different spin
states (in the bosonic case one can
also have dissociation into only one
atomic state).
Within the undepleted molecule ap-
proximation, 〈Ψ̂0 (x, t)〉 →

√
n0 (x), the

Heisenberg equations for creation-
/annihilation operators of plane
wave modes for the (−/+ fermionic-
/bosonic-) atoms are
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where Δk = Δ + �k
2/ (2mat), L is the

size and D the dimension of the sys-
tem. Here Gk is the fourier transform
of χ

√
n0 (x).

Uniform Molecular Field
The case where Gk = G0, else 0

can be solved analytically for
bosonic/fermionic atoms, within
the undepleted molecule approxima-
tion [2]. See the dashed black lines in
the following four figures.

g Non-uniform
Molecular Field

For bosons, first principal calcula-
tions (+P) have been carried out [3].
For fermions we have done calcula-
tions (systems of ODE:s) both for the
undepleted molecular approximation
and for a time-dependant single mode
(uniform case).
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Mode occupancies and
atom populations

We simulate occupancy dynamic in
momentum space:
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The number of atoms are obtained by
summing up the mode occupancies:
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Correlation Functions
To study correlations in momentum
space the following definition is made:

g↑,↓ (k,k′, t) =
〈Δn̂k,↑Δn̂k′,↓〉√
〈n̂k,↑〉〈n̂k′,↓〉

.

Again here the uniform case can
be done analytically within the un-
depleted molecular approximation
g↑,↓ (k,k′ = −k, t) = 1 ∓ nk (t) (−/+

fermions/bosons), it has zero width
i.e. g↑,↓ (k,k 	= −k

′, t) = 0.
For a non-uniform molecular field,
several momentum states start to
couple, resulting in a finite width for
the correlation function.
At JILA one have studied
similar correlations from a
cigar-shaped 40K2 BEC [1].
Experiments with 6Li2 are
in progress at Swinburne :)

1D Simulations
Narrow molecular condensate, (c):
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Cut at the resonance k = −k′ = k0:
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Illustration of the inequality:
g↑,↓ (k,k′ = −k, t) ≤ 1 ∓ nk (t) (the
equality holds for the uniform case):
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Summary
The width of the correlation func-
tion becomes broader for a narrower
molecular field, more specifically the
correlation function and the molecular
density in momentum space are pro-
portional and can be accuratelly de-
scribed in terms of a Bessel function:
g ∝ J2

1 (RTFk) /k2, of width � 3.2/RTF .
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