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Introduction

Motivated by recent experiments which have managed to trap Bose-Einstein
condensed atoms in toroidal traps [1], we examine the effect of disorder on
the metastability of supercurrents in these systems [2]. We restrict ourselves
to the limit of relatively weak interactions and relatively weak disorder, where
the mean-field approximation is expected to provide a good description of the
order parameter. Also, we model the disorder as a piecewise constant po-
tential with a random amplitude. The length scale of variation of the potential
is chosen to be a fraction (1/10) of the radius of the torus, as shown in Fig. 3.
The reader who is interested in the stability of supercurrents as one goes
from the (mean-field) limit of weak interactions, to the Tonks-Girardeau limit
of hard-core bosons (in the absence of disorder), should look at Ref. [3].

Toroidal traps: now realized experimentally

Figure 1: Recent experiments [1]
have designed toroidal traps, and
have even loaded Bose-Einstein
condensed atoms in them. Such
traps with a tight transverse con-
finement make it possible to re-
alize quasi one-dimensional sys-
tems with periodic boundary con-
ditions.

A toy-model for persistent currents

The Gross-Pitaevskii equation for the quasi-one-dimensional system that we
consider in this study is (in atomic units, h̄ = 2M = R = 1),

i∂tΨ =
[

−∂2
θ + 2πγ|Ψ|2 + V

]

Ψ. (1)

Here γ is the strength of the coupling constant between the atoms, which is
assumed to be positive (for repulsive interactions).
To get some insight into the metastability of superflow, we consider the trial
order parameter [4]

Ψ = c0φ0 + c1φ1 =
√

1 − ` φ0 + eiλ
√

` φ1, (2)

where φm = eimθ/
√

2π are the usual plane wave states and λ is some phase.
The above state has by construction ` units of angular momentum per atom,
with 0 ≤ ` ≤ 1.

Energy barriers in the absence of any potential along the torus

In the absence of any external potential (V = 0), the energy of the system
within the Gross-Pitaevskii, mean-field approximation is

E =

∫

dθ
{

|∂θΨ|2 + πγ|Ψ|4
}

= γ/2 + ` (1 + γ) − γ`2. (3)

The dispersion relation of Eq. (3) develops a local maximum at
` = (1 + γ) / (2γ) ≤ 1, provided that the coupling constant exceeds the
critical value γc = 1. Beyond this γ, the state with one unit of circulation
becomes metastable, as there is an energy barrier that the system has to
overcome to relax to the non-circulating state. These arguments can be
generalized for any circulation that is an integer multiple of h/M , as shown
in Fig. 2.

Figure 2:
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Introducing a (random) potential

An external potential V (θ) contributes an additional term to the energy

〈V 〉 =

∫

V (θ)|Ψ|2 dθ =
1

2π

∫

V (θ)
{

1 + 2
√

` (1 − `) cos (θ + λ)
}

dθ, (4)

where the freedom to choose the phase λ = 0 or π guarantees that the
second term is always negative and thus reduces the energy. Collecting all
the terms we get that the total energy is,

Etot − γ/2 −
∫

V (θ) dθ = ` (1 + γ) − γ`2 −
√

` (1 − `)|Vc|/π, (5)

where Vc =
∫

V (θ) cos(θ) dθ. The potential destabilizes the current. In order
for this to be stable, the coupling needs to be higher than γc = 1. More
generally, if one considers a potential κV (θ) with κ being a dimensionless
constant which is the “strength” of the disorder, γc is an increasing function
of κ. The lower curve in Fig. 4 shows γc(κ) calculated within the toy model
described above.

Numerical results
To get some realistic results, we examine the stability of the state with one
unit of circulation numerically, via the method of imaginary-time propagation
of the Gross-Pitaevskii equation (1), using the software XMDS [5]. More
specifically, we examine the critical value of the coupling constant that gives
stability of the state φ1 = eiθ/

√
2π for a given potential κV (θ). The result of

this calculation is shown as the solid curve in Fig. 4.

Figure 3 : The ran-
dom potential that was
used to calculate γc(κ)
in Fig. 4 (with κ = 1).
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Figure 4: The solid line shows
γc(κ) calculated numerically,
within the method of imaginary-
time propagation. The dashed
curve shows the same function
calculated within the toy model
described above.
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Finally, a Bogoliubov transformation gives the whole excitation spectrum as
well as the depletion of the condensate, however it does not give the depen-
dence of γc on κ, for more details, see Ref. [2].

Remarks and conclusions

Any (meta)stable current that circulates in a toroidal trap becomes more frag-
ile in the presence of an external potential. This is simply due to the fact that
the variation in the atomic density that results from the external potential
makes it energetically less expensive for the system to get rid of the circula-
tion, as compared to the case of a homogeneous system. As a result, strong
disorder requires a correspondingly strong coupling to stabilize the current.
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