

¹ARC Centre of Excellence for Quantum Atom Optics, Department of Physics, University of Queensland, Australia, ²Lund University, Sweden

Introduction

- The Gross-Pitaevskii equation (GPE) is expected to give a good description of 1-D BECs near T = 0 in the regime of weak interactions.
- However for strong interactions (Tonk-Girardeau-regime) the Bose gas has 'fermionic' properties and can be described as a non-interacting Fermi gas via the Fermi-Bose-Mapping-Theorem [1].

Homogeneous Bose Gases

We use a numerical solution to Lieb and Liniger's exact state-equation for 1-D Bose gas interacting via a adjustiable $\delta_c(x_i - x_j)$ potential [2]: The zero temperature ground energy with N atoms and the uniform particle density n = N/L is^{*a*}:

$$E_0 = N n^2 e(\gamma) \;,\; \gamma = c/n$$

Where the function $e(\gamma)$ is the solution to a system of equations, that can't be solved analytically.

We can directly presume that:

- e(0) = 0 since non-interacting (c = 0) free bosons have zero ground energy.
- $\bullet e(\infty) = \pi^2/3$ since this is the result for fermions ($c \rightarrow \infty$).

Fermionization of an interacting 1D Bose gas M. Ögren^{1,2} and P. D. Drummond¹

Local Density Approximation

If the variation in particle-density is small compared to the average interparticle distance Lieb and Linigers result can be applied locally: $E_0/N = n(x)^2 e(\gamma(x))$

Hydrodynamic Equations

been simulating non-linear We have Schrödinger like hydrodynamic equations:

$$\dot{\theta}\frac{\partial\Psi}{\partial t} = \left[-\frac{\partial^2}{\partial x^2} + 2cf(n) + V_{ext}\right]\Psi$$

where $n = |\Psi(x, t)|^2$. Now we apply LDA:

$$f(n) = \frac{1}{2c} \cdot \frac{d[e(\gamma) \cdot n^3]}{dn}$$

Since $e(\gamma)$ can't be expressed analytically, we fit a 2-parametric rational function to the derivaty of f(n):

After an integration we then obtain the 'interaction function':

$$f(n) \approx n - \ln\left[\left(1 + \frac{n}{A}\right)^{\alpha} \left(1 + \frac{n}{B}\right)^{\beta}\right]$$

where A, B, α, β are numerical constants which depend on c_1 , c_2 and c_1 .

We have used consecutive integration sections in XMDS [3] to first obtain a groundstate, with an imaginary-time method, and when performed an excitation in real-time by strengthen the potential:

Dynamic properties

We have calculated the square of the ratio between the oscillation frequency of the (first) breathing mode, ω_B , and the strength of a harmonic potential, ω , which undergoes a transition^a from 3 to 4:

Static properties

equations.

Numerical Results

^aThe limits corresponds to the results from the Gross-Pitaevskii- respective Kolomeisky-Straley-

- atom-chips.
- with this method.

(2003)

Conclusions

• We have developed methods to simulate static and long wavelength dynamical properties of 1-D Bose gases, relevant to current experiments in optical lattices and

• Results for the breathing mode ratios are consistent with [4] and [5], which have used different methods.

• Gives us confidence that calculations of other dynamical properties can be done

• For further details see my diploma work report: www.magnus.ogren.se/report.pdf

Outlook

• Can we generalise the method to finite

• Future applications to trapped 1-D gases

References

[1] M. Girardeau, J. Math. Phys. 1, 516 (1960) [2] E. H. Lieb and W. Liniger, Phys. Rev. **130**, 1605 (1963)

[4] Chiara Menotti and Sandro Stringari, Phys. Rev. A 66, 043610 (2002) [5] J. N. Fuchs, X. Leyronas, R. Combescot, Phys. Rev. A 68, 043610

^aWe use units where $\hbar = 2m = 1$, c is then related to the 3D scattering length according to: $c = 2a_{3D}/l_{\perp}^2$