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Introduction

•The Gross-Pitaevskii equation (GPE) is
expected to give a good description of
1-D BECs near T = 0 in the regime of
weak interactions.

•However for strong interactions (Tonk-
Girardeau-regime) the Bose gas has
’fermionic’ properties and can be de-
scribed as a non-interacting Fermi gas via
the Fermi-Bose-Mapping-Theorem [1].

Homogeneous Bose Gases

We use a numerical solution to Lieb and
Liniger’s exact state-equation for 1-D Bose
gas interacting via a adjustiable δc(xi − xj)-
potential [2]: The zero temperature ground
energy with N atoms and the uniform parti-
cle density n = N/L isa:

E0 = Nn2e(γ) , γ = c/n

Where the function e(γ) is the solution to
a system of equations, that can’t be solved
analytically.
We can directly presume that:

• e(0) = 0 since non-interacting (c = 0) free
bosons have zero ground energy.

• e(∞) = π2/3 since this is the result for
fermions (c → ∞).
aWe use units where h̄ = 2m = 1, c is then related to the 3D scattering length according to:

c = 2a3D/l2⊥

Local Density Approximation

If the variation in particle-density is small
compared to the average interparticle dis-
tance Lieb and Linigers result can be ap-
plied locally: E0/N = n(x)2e(γ(x))

Hydrodynamic Equations

We have been simulating non-linear
Schrödinger like hydrodynamic equations:
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where n = |Ψ(x, t)|2. Now we apply LDA:

f (n) =
1
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·
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Since e(γ) can’t be expressed analytically,
we fit a 2-parametric rational function to the
derivaty of f (n):

f ′(γ) ≈
1 + c1 · π
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After an integration we then obtain the ’in-
teraction function’:

f (n) ≈ n − ln
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]

where A, B, α, β are numerical constants
which depend on c1, c2 and c.

Numerical Results

We have used consecutive integration sec-
tions in XMDS [3] to first obtain a ground-
state, with an imaginary-time method, and
when performed an excitation in real-time by
strengthen the potential:

Dynamic properties

We have calculated the square of the ra-
tio between the oscillation frequency of the
(first) breathing mode, ωB, and the strength
of a harmonic potential, ω, which undergoes
a transitiona from 3 to 4:
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Static properties

The ’normalized’ second moment:
〈x2〉 · [mω2µ−1]

Undergoes a transitiona from 0.4 to 0.5:
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aThe limits corresponds to the results from the Gross-Pitaevskii- respective Kolomeisky-Straley-
equations.

Conclusions

•We have developed methods to simu-
late static and long wavelength dynamical
properties of 1-D Bose gases, relevant to
current experiments in optical lattices and
atom-chips.

•Results for the breathing mode ratios are
consistent with [4] and [5], which have
used different methods.

•Gives us confidence that calculations of
other dynamical properties can be done
with this method.

•For further details see my diploma work re-
port: www.magnus.ogren.se/report.pdf

Outlook

•Can we generalise the method to finite
temperatures?

•Future applications to trapped 1-D gases
on chips?
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