Fermionization of an interacting 1D Bose gas

M. Ögren ${ }^{1,2}$ and P. D. Drummond ${ }^{1}$

${ }^{1}$ ARC Centre of Excellence for Quantum Atom Optics, Department of Physics, University of Queensland, Australia, ${ }^{2}$ Lund University, Sweden

Introduction

-The Gross-Pitaevskii equation (GPE) is expected to give a good description of 1-D BECs near $T=0$ in the regime of weak interactions.

- However for strong interactions (Tonk-Girardeau-regime) the Bose gas has 'fermionic' properties and can be described as a non-interacting Fermi gas via the Fermi-Bose-Mapping-Theorem [1].

Homogeneous Bose Gases

We use a numerical solution to Lieb and Liniger's exact state-equation for 1-D Bose gas interacting via a adjustiable $\delta_{c}\left(x_{i}-x_{j}\right)$ potential [2]: The zero temperature ground energy with N atoms and the uniform particle density $n=N / L$ is ${ }^{a}$:

$$
E_{0}=N n^{2} e(\gamma), \gamma=c / n
$$

Where the function $e(\gamma)$ is the solution to a system of equations, that can't be solved analytically.
We can directly presume that:

- $e(0)=0$ since non-interacting ($c=0$) free bosons have zero ground energy.
- $e(\infty)=\pi^{2} / 3$ since this is the result for fermions ($c \rightarrow \infty$).

Local Density Approximation

If the variation in particle-density is small compared to the average interparticle distance Lieb and Linigers result can be applied locally: $E_{0} / N=n(x)^{2} e(\gamma(x))$

Hydrodynamic Equations

We have been simulating non-linear Schrödinger like hydrodynamic equations:

$$
i \frac{\partial \Psi}{\partial t}=\left[-\frac{\partial^{2}}{\partial x^{2}}+2 c f(n)+V_{e x t}\right] \Psi
$$

where $n=|\Psi(x, t)|^{2}$. Now we apply LDA:

$$
f(n)=\frac{1}{2 c} \cdot \frac{d\left[e(\gamma) \cdot n^{3}\right]}{d n}
$$

Since $e(\gamma)$ can't be expressed analytically, we fit a 2-parametric rational function to the derivaty of $f(n)$:

$$
f^{\prime}(\gamma) \approx \frac{1+c_{1} \cdot \pi^{2} \gamma}{1+c_{2} \cdot \gamma+c_{1} \gamma^{2}}
$$

After an integration we then obtain the 'interaction function':

$$
f(n) \approx n-\ln \left[\left(1+\frac{n}{A}\right)^{\alpha}\left(1+\frac{n}{B}\right)^{\beta}\right]
$$

where A, B, α, β are numerical constants which depend on c_{1}, c_{2} and c.

Numerical Results

We have used consecutive integration sections in XMDS [3] to first obtain a groundstate, with an imaginary-time method, and when performed an excitation in real-time by strengthen the potential:

Dynamic properties

We have calculated the square of the ratio between the oscillation frequency of the (first) breathing mode, ω_{B}, and the strength of a harmonic potential, ω, which undergoes a transition ${ }^{a}$ from 3 to 4 :

Static properties

The 'normalized' second moment:
$\left\langle x^{2}\right\rangle \cdot\left[m \omega^{2} \mu^{-1}\right]$
Undergoes a transition ${ }^{a}$ from 0.4 to 0.5 :

Conclusions

- We have developed methods to simulate static and long wavelength dynamical properties of 1-D Bose gases, relevant to current experiments in optical lattices and atom-chips.
- Results for the breathing mode ratios are consistent with [4] and [5], which have used different methods.
- Gives us confidence that calculations of other dynamical properties can be done with this method.
- For further details see my diploma work report: www.magnus.ogren.se/report.pdf

Outlook

- Can we generalise the method to finite temperatures?
- Future applications to trapped 1-D gases on chips?

References

[1] M. Girardeau, J. Math. Phys. 1, 516 (1960)
${ }^{[2]}$ E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963) [3] www.xmds.org
[4] Chiara Menotti and Sandro Stringari, Phys. Rev. A 66, 043610 (2002) [5] J. N. Fuchs, X. Leyronas, R. Combescot, Phys. Rev. A 68, 043610

