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Motivation

Simulations of interacting quantum many-body systems is a long
standing problem!

Existing methods: time-dependent (TD) density functional theory
(DFT) and matrix product state (MPS) based algorithms.
Challenges: (1) beyond few particles; (2) strongly correlated
systems; (3) higher dimensional systems (D>1).

Phase space stochastic methods for bosons — long history of
successful applications to real-time dynamics and ground-state
(equilibrium) calculations.

Phase space stochastic methods for fermions is a new development;
tested so far only for the ground-state of the Hubbard model [1,2].

Model system

As a first multi-mode dynamical application of the fermionic
stochastic method we study dissociation of a Bose-Einstein
condensate of molecular dimers into correlated atom pairs.
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This is an atom optics analogue of parametric down-conversion with
photons;

Down-conversion has been pivotal in the advancement of quantum
optics; molecular dissociation may play a similar role in quantum-
atom optics

Model Hamiltonian:

H = Hy — ihxp / e (Wi 0y — )

We study atom-atom, molecule-atom ,and molecule-molecule-
correlations for molecules made of fermionic atoms

Our results go beyond the predictions of existing approximate
methods (undepleted molecular field and the pairing mean-field
method [3,4]).

Implementation via stochastic ODEs
For real-time dynamic we want to solve the Liouville equation.

The density operator is expanded in a continuous Gaussian operator
base [1]; the Liouville equation is transformed into a Fokker-Planck
equation, which in turn is transformed into a set of stochastic
differential equations.

As an example, we consider a uniform molecular field in 1D
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In practice, the dynamics is simulated via stochastic ODEs like e.g.:
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Averages over stochastic c-fields approach true quantum
mechanical expectationvalues of operators in the limit of many
realisations of the SDEs.
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Few-mode system: test case

As a test example, we first compare the stochastic method for 10
molecules and 10 atomic modes with the solution to the Schrédinger
equation in matrix representation.
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Excellent agreement (including for higher-order correlations) up to a
certain simulation time where stochastic sampling problems occur.
Sampling errors can be reduced by ‘stochastic gauges’.

Results for a multi-mode system
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Challenge: simulate a
many-body system with
100 molecules and 15
1000 momentum modes o
(can not be done using =1
Schrodinger’s equation)
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Can be done with
the stochastic method

on a standard PC!
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The strongly depleted
molecular field develops
highly nontrivial pair correlation
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Coherence is lost; the pairing

mean-field theory (PMFT)
breaks down.
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Future work

« Treat non-uniform molecular condensates and higher dimensions

¢ Include atom-atom, molecule-atom and molecule-molecule s-wave
scattering interactions

» Optimise 'stochastic gauges’ to extend useful simulation time
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