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Abstract: Dynamics of matter waves in the atomic to molecular condensate transition
with a time modulated atomic scattering length is investigated. The conditions for dynami-
cal suppression of association of atoms into the molecular field are obtained. © 2021 The
Author(s)

1. Introduction

The dynamics of nonlinear waves in quadratic nonlinear media with periodic modulations in time of the parameters
is an active area for investigations. The main type of modulation that attracts interest, is the case of periodically
poling crystals with rapid modulations of the quadratic nonlinearity parameter along the direction of propagation
[1] and the periodic modulation of mismatch parameters, which can be realized in a nonlinear optical media [3],
or for matter waves in atomic-molecular condensates [4]. Represent of interest an investigation of dynamics of
waves in quadratic nonlinear media with a Kerr nonlinearity varying along the direction of propagation. System
described by this type of model is an atomic-molecular condensate, while varying in time the atomic scattering
length,that can be implemented by the so-called Feshbach resonance management.

2. The model. Averaged χ(2)system

The system, describing the propagation of the fundamental- (FH) and second- (SH) harmonics in a quadratic
nonlinear media with a cubic nonlinearity have in standard optics dimensionless variables the form [?]

iuz +uxx + γ(z)|u|2u+u∗v = 0,

ivz +
1
2

vxx +qv+
u2

2
= 0. (1)

Here u,v are the fields of the FH and the SH respectively. For an atomic-molecular BEC system they are instead
the atomic and molecular fields [5].

We here study the propagation of continuous waves (CW), i.e. when uxx = vxx = 0, in a media with a periodically
varying Kerr nonlinearity.

We obtain the following system of averaged coupled equations for the FH and SH

iūz−
γ1

ω
J1

(
2γ1

ω
|ū|2

)
ū(ū2v̄∗+ ū∗2v̄)+ ū∗v̄J0

(
2γ1

ω
|ū|2

)
+ γ0|ū|2ū = 0,

iv̄z +qv̄+
ū2

2
J0

(
2γ1

ω
|ū|2

)
= 0. (2)

The Hamiltonian of the above averaged system, i.e.

iūz =−
∂H
∂ ū∗

, iv̄z =−
∂H
∂ v̄∗

,

is then

H =
γ0

2
|ū|4 +q|v̄|2 + 1

2
J0

(
2γ1

ω
|ū|2

)
(ū2v̄∗+ ū∗2v̄). (3)

From the above equation we conclude the important result that the Hamiltonian have the same form as the standard
one, but with a renormalized effective quadratic nonlinearity parameter

χeff = J0

(
2γ1

ω
|ū|2

)
χ. (4)
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Note that the renormalization depends nonlinearly on the intensity of the FH field. For atomic-molecular BEC
system, it means that the renormalized atom-molecular interaction depend nonlinearly on the atomic population.

Here the modulations of the cubic nonlinearity can lead to a weakening of the effective quadratic interaction,
i.e. Eq. (4). A new effect seen here is that in the condition for a vanishing effective coupling (χeff = 0), which
means a zero of the Bessel function, enters the intensity of the fundamental harmonic (atomic population). The
comparison of results by numerical simulations of the full (1) and averaged equations (2) show a good agreement.

2.1. Dynamics for slow modulation

Let us study the dynamics of the system under slow resonant modulations. For small amplitude of oscillations we
can write:

w(ξ )≈ w3asin2(rξ ) =
w3a

2
(1− cos(2rξ )). (5)

To check the resonant behavior in the FH to SH oscillations, we take the frequency for the modulation of the
mean-field cubic (Kerr) nonlinearity to be equal to the frequency of Eq. (5), i.e. ω = 2r. The numerical integration
shows an resonant enhancement for the amplitude of the oscillations for the second harmonic (the molecular field)
generation, which is growing with γ1. Chaotic oscillations originating from homoclinic crossing are also possible
here. To investigate possible chaotic regimes of oscillations, we calculate the Melnikov function M(z0) for the
particular case γ0 = 0,

M(z0) =−
πγ1

3
ω2(2+ω2)

sinh(πω√
2
)

sin(ωz0). (6)

Since the Melnikov function above have infinite number of zeros, chaos in the harmonic generation(molecular
field) is expected to occur.

In conclusion, we have obtained the parameters of modulations for which the SH generation (association of
atoms into a molecular condensate) can be suppressed dynamically. For the case of slow modulations, we find an
enhancement of the SH (i.e.the molecular condensate ) generation for the resonant value of the frequency for the
modulations of the nonlinearity, which for strong amplitudes are chaotic.
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Introduction
The dynamics of nonlinear waves in quadratic nonlinear media
with periodic modulations in time of the parameters is an active
area for investigations [1]. The interest is connected with the
possibility of quasi-phase-matching in such media and the ability
to control the interactions of the waves. The main type of mod-
ulation that attracts interest, is the case of periodically poling
crystals with rapid modulations of the quadratic nonlinearity pa-
rameter along the direction of propagation. Another interesting
case is the periodic modulation of mismatch parameters, which
can be realized in a nonlinear optical media, or for matter waves
in atomic-molecular condensates.
Here we will investigate analytically and numerically the propaga-
tion of continuous waves in a quadratic nonlinear (χ (2)) system
with an additional nonuniform cubic (Kerr) nonlinearity.

The Model
The system, describing the propagation of the fundamental- (FH)
and second- (SH) harmonics in a quadratic nonlinear media with a
cubic nonlinearity have in standard optics dimensionless variables
the form [1]

iuz +uxx + γ(z)|u|2u +u∗v = 0,

ivz +
1

2
vxx +qv +

u2

2
= 0. (1)

Here u,v are the fields of the FH and the SH respectively.
The related system of coupled Gross-Pitaevskii like equations with
conversion terms describing the atomic-molecular BEC is in phys-
ical units

i h̄ψa,T = − h̄2

2ma
ψa,XX + ∑

j=a,m

gaj |ψj |2ψa +Gamψ
∗
aψm,

i h̄ψm,T = − h̄2

2mm
ψm,XX + δωψm + ∑

j=a,m

gjm|ψj |2ψm +Gam
ψ2
a

2
(2)

where mm = 2ma are the masses, δω is the energy detuning,
gaa, gmm, gam are one-dimensional parameters for the atom-atom,
molecule-molecule, and the atom-molecular interactions [2], with
gaa = 2h̄ω⊥as, where as is the atomic scattering length and the
parameter Gam is the strength of the atom-molecule conversion,
while effects of elastic collisions involving molecules, gmm and
gam in Eq. (2), will be neglected here. The dimensionless form of
Eqs. (1) is obtained by the following change of variables in the

system (2) t = Tω⊥,x =
√

2X
la

, la =
√

h̄
maω⊥

u =
√

Gam
h̄ω⊥

ψa,v = Gam
h̄ω⊥

ψm,γ =
gaa
Gam

,q = δω

h̄ω⊥
. Time dependent variations of the atomic scattering

length as and therefor the parameter γ , can be obtained by the
variations in time of an external magnetic field near a resonant
value, so-called Feshbach resonance management technics [3].
In this work we will investigate continues waves (uxx = vxx = 0)
with rapid and slow periodic variations of the cubic nonlinearity.
The modulations are taken in the form: γ = γ0 + γ1 cos(ωz)

Unperturbed χ (2) system with Kerr
nonlinearity

We apply conventional normalizations for the amplitudes, the di-
rection of amplitudes, and the mismatch, as u =

√
Iρe iφ , v =√

Iµe iψ, Z = z/L, κ = qL/2, where I = |u|2 + 2|v |2 is the con-
served total intensity (i.e., ρ2 + 2µ2 = 1). For the atomic-
molecular BEC system it have the interpretation of the total
number of particles. By defining the parameters, β = L

√
I ,

Υ = LI γ0, we can obtain differential equation for the relative
intensity, w = µ2, of the second harmonic

ẇ 2 +P(w) = 0, (3)

which is equivalent to the dynamical equation describing a clas-
sical particle moving in a potential P(w). The potential P(w) is
in the form of a quartic polynomial

P(w) = D2w 4−4(1 +DC )w 3 + 4(1− 1

2
HD +C 2)w 2− (1−4HC )w +H2,

where λ = Υ/β , σ = κ/β , C = λ −σ and D = 2λ . In Fig. 1
(left) a classification of the roots of the quartic equation P(w)
in the (σ ,H) plane with λ = 2 is illustrated. The potential P(w)
and its corresponding phase portraits are shown in Fig. 1 (right)
for σ = 0.2 and four different values of H , corresponding to each
regions in the (σ ,H) plane. In the physical region (A) of the
(σ ,H) plane, Eq. (3) has a solution w(ξ ) which is a periodic
function, determined by the four real roots w0 < w1 < w2 < w3,
which oscillates between the two lowest roots w0 and w1. The
solution can be explicitly obtained by integrating Eq. (3).

w(ξ ) =
w3asn2(rξ |k) +w0

asn2(rξ |k) + 1
, (4)

where r = ND = λ
√

(w3−w1)(w2−w0) and k =√
(w3−w2)(w1−w0)
(w3−w1)(w2−w0), a = w1−w0

w3−w1
.
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Figure: 1. (left)Regions of the (σ ,H) plane in which the quartic equation
P(w) = 0 has four real roots, region A (blue); two real roots (white region);
and no real root region B (red). Large (black) dots on the line (L) indicates
separatrices in the phase space, when two of the four roots are equal. (right)
The potential and corresponding phase space for the four (green) squares at
different regions in the (σ ,H) plane (left), with σ and H according to the
titles of the subplots.

Averaged equation for strong management
We consider the following form for the parameter of the cubic
nonlinearity in the system (1) γ(z) = γ0 + 1

ε
γ1

(
z
ε

)
,ε � 1, where

γ1(ζ + 1) = γ1(ζ ), with ζ = z/ε , is a periodic function. The
following transformation to a new field for the FH exlude strong
rapid varying terms from the GP equations. u = ūe iΓ (z)|ū|2, v = v̄ ,
where Γ(z) is the anti-derivative of γ1(z), i.e., Γz = γ1(z). We
obtain the following system of averaged coupled equations for the
FH and SH

i ūz−
γ1

ω
J1

(
2γ1

ω
|ū|2
)
ū(ū2v̄∗+ ū∗2v̄) + ū∗v̄ J0

(
2γ1

ω
|ū|2
)

+ γ0|ū|2ū = 0,

i v̄z +qv̄ +
ū2

2
J0

(
2γ1

ω
|ū|2
)

= 0. (5)

where Ji(.), i = 0,1 are the zero and first order Bessel
functions. The Hamiltonian of the above averaged system,
i.e. i ūz = − ∂H

∂ ū∗, i v̄z = − ∂H
∂ v̄∗, is then H = γ0

2 |ū|
4 + q|v̄ |2 +

1
2J0

(
2γ1
ω
|ū|2
)

(ū2v̄∗+ ū∗2v̄). From the above equation we con-

clude the important result that the Hamiltonian have the same
form as the standard χ (2)-system but with a renormalized effec-

tive quadratic nonlinearity parameter χeff = J0

(
2γ1
ω
|ū|2
)
. Note

that the renormalization depends nonlinearly on the intensity of
the FH field. For atomic-molecular BEC systems, it means that
the renormalized atom-molecular interaction depend nonlinearly
on the atomic population.
The validity of the averaging process is checked in Fig. 2 by
solving the original equations (1) and the corresponding averaged
equations (5).
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Figure: 2. Comparison of solutions from the original and the averaged equa-
tions. Numerical solutions of Eq. (1), solid (red) curves; respectively from
Eq. (5), dashed (black) curves. Parameters were here set to γ0 = 1, γ1 =
20, ω = 30, and q = 0.1, with initial conditions u(0) = ū(0) = 1, v(0) =
v̄(0) = 0 (left) and u(0) = ū(0) =

√
0.6exp(iφ ), v(0) = v̄(0) =

√
0.2exp(iψ)

(right) where φ = 0 and ψ = π

2 .

Evolution of cw under management with
rapid and slow oscillations

We again apply conventional normalizations to the Eq. (5). We
assume γ = 0 and obtain the differential equation:

ẇ =
√

J2
0 (G (1−2w))(1−2w)2w −4σ 2w 2. (6)

where w = µ2, G = 2γ1I/ω and an overdot denotes differentia-
tion with respect to ξ = βZ Eq. (6) is valid when the following
condition is fulfilled

|J0(G (1−2w))(1−2w)| ≥ |2σ
√
w |. (7)

Fig. 3 shows the numerical results of integrating Eq. (6), i.e. the
relative intensities, w(z) = µ2 = |v̄ |2/I and 1− 2w(z) = ρ2 =
|ū|2/I . We further calculated numerically the percentage of the
intensity of the SH wave, with respect to the total intensity, for
different values of the parameters σ and G , see Fig. 4 (left), while
Fig. 4 (right) illustrates the regions of parameters corresponding
to 2µ2 ≥ 0.8 (region A), and 2µ2 < 0.8 (region B). For the
case weak management we choose parameters so that k� 1 and
a� 1 in the solution (4), we can write Eq. (4) in the following
approximative form

w(ξ )≈ w3a sin2(rξ ) =
w3a

2
(1− cos(2rξ )). (8)

To check the resonant behavior in the FH to SH oscillations,
we take the frequency for the modulation of the cubic (Kerr)
nonlinearity to be equal to the frequency of Eq. (8), i.e. ω = 2r .

Results of the numerical integration are shown in Fig. 5.
To investigate possible chaotic regimes of oscillations, we cal-
culate the Melnikov function [4] for the particular case γ0 = 0
(corresponding to a periodic Feshbach resonance management
close to zero in the atomic scattering length)

M(z0) =−πγ1

3

ω2(2 + ω2)

sinh(πω√
2
)

sin(ωz0). (9)

Since the Melnikov function above have infinite number of zeros,
chaos in the harmonic generation is expected to occur. This is
also found numerically, see Fig. 6.
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Figure: 3. Numerical evolution from Eq. (6) for the intensities corresponding
to the case G = 2 (left) and G = 4 (right), with σ = 0.1 in both cases, and
the initial conditions µ(0) = 0, ρ(0) = 1. The solid (blue) curves shows the
relative intensity of the FH wave (ρ2), and the dashed (red) curves shows
the relative intensity of the SH wave (µ2). In the original equations these
parameters corresponds to γ1/ω = G/(2I ) and q = 2σ

√
I where I = 1.
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Figure: 4. Ratio of the intensity of the SH wave and the total intensity (left),
as a function of q (q = 2σ

√
I ), for different values of G (G = 2γ1I/ω), see

inset legend. Illustrative regions in the parameter plane (σ ,G ) obtained from
the condition (7) (right), where G0 ' 2.405 is the first zero of the Bessel’s
function J0. More than 80% transformation of the energy defines region A,
and less than 80% transformation defines region B .

0 10 20 30 40
z

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

|v
|2

0 10 20 30 40
z

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

|v
|2

Figure: 5. Numerically calculated intensity of the SH wave for resonant mod-
ulations, from Eq. (1). Dashed (blue) curves shows oscillations of the SH
wave in the case where the modulation is absent (γ1 = 0). Solid (red) curves
shows resonance behavior when the frequency (ω) of modulations for the cu-
bic (Kerr) nonlinearity is equal to the frequency (2r) of oscillations for the SH
wave without modulation. For the graph (left) γ1 = 0.2, and for the graph
(right) γ1 = 0.4. The other parameters were ω = 2r ≈ 3.95, γ0 = 2, q = 0.2,
and I = 1 (w0 = 0.0, w1 = 0.06090, w2 = 0.7878, w3 = 1.3011).
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Figure: 6. Numerically calculated intensity of the SH wave for strong resonant
modulations, from Eq. (1). For example, for the case of γ1 = 5 (left) and
γ1 = 6 (right), chaos occurs. All the other parameters are the same as in
Fig. 5.

Conclusion
To sum up, the obtained Hamiltonian for the averaged system
shows that the result for rapid modulations of the Kerr nonlinear-
ity leads to a nonlinear renormalization of the χ (2) nonlinearity
coefficient. In result, we have obtained the parameters of mod-
ulations for which the SH generation (association of atoms into
a molecular condensate) can be suppressed dynamically. For the
case of slow modulations, we find an enhancement of the SH
generation (the molecular field) for the resonant value of the fre-
quency for the modulations of the nonlinearity, which for strong
amplitudes are chaotic. A sequential application of enhancing
and suppressing modulations may be used in producing molecules
from atoms.
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