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Quantum correlations in molecular dissociation to fermion pairs

Abstract

We calculate the growth of correlations in a Fermi gas 
formed by dissociation from a molecular condensate, 
following the rapid quench through a Feshbach 
resonance. The exact quantum many-body dynamics 
are numerically simulated by means of a Gaussian 
phase-space representation. We quantify deviations of 
atom-atom pair correlations from Wick’s factorization 
scheme, and show that atom-molecule and molecule-
molecule correlations grow with time, in clear 
departures from pairing mean-field theories. 
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Method

Gaussian phase-space 
representation
Formally, we expand the many-body density operator 
as a mixture of nonHermitian Gaussian operators.  The 
expansion is sampled as stochastic trajectories in a 
generalised Gaussian phase space:

 

Final equations have the structure of mean-field 
equations, with extra stochastic terms that give the 
many-body quantum correlations

2D Results

Dynamics in 2 dimensions
Molecular correlations

A
The large g(2) result can be explained in terms of initial 
uncertainties: superposition of oscillations of different 
frequency

Atomic momentum distribution at time = 10:

Atomic correlations W at time = 10:

System

Ultracold molecules and 
atom pairs

Matter-wave analogue of spontaneous down-
conversion in optics, the workhorse of entangled 
photon production in quantum optics, except that 
constituents are fermions.

Bose-Fermi Model

Assumptions: 
uniform system
ground state molecular condensate
dilute atoms: ignore s-wave interactions

Conclusions

Summary
The application of the Gaussian phase-space method 
gave simulations of useful duration of the quantum 
many-body dynamics, for large 1d and 2d systems..
We benchmarked the pairing mean-field theory, 
showing that it generally predicts populations 
accurately.
However, there were regimes where significant, 
higher-order correlations develop, unnaccounted for 
by mean-field theory.
We are currently testing the methods on the Hubbard 
model, with the aim of incorporating s-wave 
interactions into the dynamics

Calculations

Correlations functions
Calculate a suite of dynamical observables to 
benchmark the method and probe the many-body 
correlations

Molecule-Molecule Correlation:

Atomic Correlation:

The Gaussian phase-space methods allows us to 
determine the real-time evolution, without any 
assumptions about how correlations factorise.

1D Results

Quantum simulations
prepare coherent-state molecular condensate
sudden quench through Feshbach resonance
watch molecules dissociate into atom pairs

Comparison to exact 
diagonalisation results
For small systems we can independently check the 
accuracy of the results (black lines) by comparisons 
with exact diagonalisation (dashed yellow):

We see significant departures from mean-field results: 
Wick factorisation breaks down.
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M. Ögren et al.

The Gaussian phase-space method represents an exten-
sion to fermions of successful bosonic techniques [21–30].
The essence of the method is the mapping of the density
operator evolution onto a Fokker-Planck equation for
a phase-space distribution, via a continuous Gaussian
operator basis [13]. The evolving distribution is then
sampled with stochastic differential equations (SDEs)
for the phase-space variables [21,22]. The mapping to
the phase-space distribution is exact [21–23,31] provided
no boundary terms arise in deriving the Fokker-Planck
equation. In practice, such terms may develop after some
simulation time, but in an easily verifiable way [23,31],
putting a well characterised upper limit to a useful
simulation duration. Numerical signatures of systematic
errors include: i) the onset of spiking behaviour due to the
presence of near-singular trajectories; ii) sudden dramatic
increase in the statistical uncertainties; and iii) develop-
ment of power-law tails in the probability distribution.
All these signatures, well known from the early studies
of real-time dynamics of bosonic systems [23] and from
equilibrium calculations for fermion systems using
imaginary-time techniques [13,31], carry over to the
present simulations of fermion dynamics and are verified
in the numerical examples that we present below.
As in any stochastic method, sampling error limits the

precision of the results. However, unless the distribution
develops power-law tails, indicated by the above-
mentioned signatures, this uncertainty can be made
arbitrarily small by increasing the number of trajectories.
From the physical point of view, the Gaussian phase-

space method can be viewed as providing the quan-
tum corrections, through additional stochastic terms, to
different mean-field approaches. For example, with certain
factorization assumptions [32], the method reduces to
a time-dependent Hartree-Fock formalism. Furthermore,
neglecting the stochastic terms recovers the approximate
pairing mean-field theory (PMFT) [19,33], to which we
compare the phase-space results. While often accurate
for determining particle number densities, the mean-field
approach gives no direct information about higher-order
correlations, and its accuracy is not known a priori. In
contrast to this, the first-principles simulations presented
here reveal significant development of higher-order corre-
lations.
For the first application of the fermionic phase-space

method to a multi-mode dynamical problem, we consider
a uniform molecular BEC (MBEC) initially in a coherent
state at zero temperature, with no atoms present. Assum-
ing sufficiently low densities, we neglect s-wave scattering
interactions to simplify the treatment. The Hamiltonian
of this fermion-boson model [14] is given by

Ĥ = !
∑

k,σ

∆kn̂k,σ − i!κ
∑

k

(
â†m̂k− m̂†kâ

)
, (1)

where k labels the plane-wave modes and σ= 1, 2 labels
the effective spin state for the atoms. Even though we will

present the numerical results for a one-dimensional (1D)
system, we formulate the problem in the general case as
the method is straightforward to use in higher dimensions.
The fermionic number and pair operators are defined as
n̂k,σ = ĉ

†
k,σ ĉk,σ and m̂k = ĉk,1ĉ−k,2, with {ĉk,σ, ĉ

†
k′,σ′}=

δkk′δσσ′ , while the bosonic molecular operator obeys
[â, â†] = 1. The atom-molecule coupling (invoked by a
magnetic Feshbach resonance sweep or optical Raman
transitions) is characterized by κ= χD/LD/2 [33], where
L is the size of the quantization box, and mediates an
effective interaction between the atoms. The first term,
!∆k ≡ !2|k|2/(2ma)+ !∆, contains the kinetic energy of
the atoms (of mass ma), while the detuning ∆< 0 corre-
sponds to the total dissociation energy 2!|∆| imparted
onto the system by the external fields.
Because of the symmetry between spins in the Hamil-

tonian, and the equal initial populations, we need only to
consider the number operator for one of the spin states
n̂k = n̂−k = n̂k,1 = n̂k,2. An additional operator identity
that follows from the Hamiltonian is

m̂†
k
m̂k (= n̂k,1n̂−k,2) = n̂k, (2)

which arises because the condensate to which the atom
pairs are coupled is assumed to be homogeneous. One
consequence of eq. (2) is that the relative number of
atoms with equal and opposite momenta is perfectly
squeezed [20], i.e. with zero variance. It also means
that the second-order atom-atom correlation function
reduces to g(2)12 (k,−k)≡ 〈m̂

†
k
m̂k〉/〈n̂k,1〉〈n̂−k,2〉= 1/〈n̂k〉.

Thus the atom-atom correlation function can be deter-
mined from the number density alone.
One effective approximate approach for treating the

dynamics of dissociation is the PMFT [19,33], which is
obtained by assuming atom-molecule decorrelation and by
replacing the molecular operator by a coherent mean-field
amplitude, â→ β.
In this paper we solve the full Hamiltonian (1) exactly,

and in order to quantify deviations from the PMFT
behavior we evaluate several correlation functions. The
departures from Wick decorrelation are analyzed via the
correlation coefficient

W =
∑

k

〈m̂†
k
m̂k〉
/∑

k

(
|〈m̂k〉|2+ 〈n̂k〉2

)
, (3)

which is unity within the PMFT.
To examine molecule-atom pair correlations and the

second-order coherence of the molecular field, we define

g(2)ma(k) =
〈â†ân̂k〉
〈â†â〉〈n̂k〉

, g(2)mm =
〈â†â†ââ〉
〈â†â〉2

. (4)

Again, within the PMFT, these will be unity. We may
expect that, over time, correlations will develop between
the molecular and atomic fields; the Gaussian phase-
space simulations give exact quantitative accounts of these
effects.
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to be evaluated exactly [see Figs. 2 (a) and 5 (a)]. Within
PMFT higher moments factorize according to Wick’s the-
orem e.g. 〈m̂†

k
m̂k〉 = |mk|2 + n2

k
. We define a related

quantity [see Figs. 2 (b) and 5 (b)]

W =
∑

k

〈m̂†
k
m̂k〉 /

∑

k

(
|〈m̂k〉|2 + 〈n̂k〉2

)
. (3)

Within the additional undepleted molecular field approx-
imation (UMF) where β (t) = β0 =

√
N0, PMFT can

be solved analytically (author?) [7]. This is equivalent
to solving the linear Heisenberg’s equations of the b̂†

k,σ

and b̂k,σ operators, for a mean-field coupling constant
g = κ

√
N0 in the Hamiltonian (1), defining our charac-

teristic timescale t0 = 1/g. This framework have also
been generalized to treat the important effects of a non-
uniform MBEC (author?) [10].

In this paper we solve the full Hamiltonian (1) from
first principles. The computationally simpler case with
bosonic atoms has been treated with bosonic phase space
representations (in more general situations) (author?)
[11].

A useful operator equality is [see Figs. 1, 5 (b)]

m̂†
k
m̂k = n̂k, (4)

equivalent to the commutator [m̂†
k
, m̂k] = 2n̂k − 1,

see e.g. (author?) [5, 12]. From (4) Glauber’s
atom-atom correlation function is g(2)

1,2 (k,−k) =〈
m̂†

k
m̂k

〉
/ 〈n̂k,1〉 〈n̂−k,2〉 = 1/ 〈n̂k〉 , with a relative num-

ber variance Vk,−k = 〈[∆(n̂k,1− n̂−k,2)]2〉/∆SN = 0 (au-
thor?) [7]. The latter result means a perfect squeezing
of the number fluctuation [for (1) at zero temperature,
while not true in general e.g. for a non-uniform MBEC
(author?) [10]]. Note that the qualitative results here
are true for the exact theory and PMFT, while g(2)

1,2 quan-
titatively differs, due to different mode occupancy (see
Fig. 1). To examine molecule-atom correlations and the
coherence of the molecular field we define

g(2)
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〈
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Fermionic phase space representation: The essence,
when applied to quantum dynamics, is the mapping of
the density operator evolution into a Fokker-Planck equa-
tion (FPE), via a continuous Gaussian operator base
(author?) [3]. The corresponding distribution can then
be sampled with stochastic differential equations (SDE),
which have a structural appearance similar to the Heisen-
berg’s equations. For the Hamiltonian (1) we need a
complex (phase-) space of dimension 3M + 2, M be-
ing the number of lattice points (for problems where
e.g.

〈
b̂†i b̂j "=i

〉
%= 0 one have ∼ M2). We evolve

Figure 1: Thick (black) solid curves shows 〈n̂k〉 from the phase
space representation. The thickness of the solid lines overesti-
mates the ±standard deviation from the stochastic sampling
(right inset), here including 106 trajectories. Dashed gray
(yellow online) curves are the corresponding results from (8).
The dashed-dotted top curve is the PMFT result for 〈n̂k0

〉,
which has the largest deviation of the modes. Large (black)
[small (yellow)] squares corresponds to the left hand side of
(4) from the phase space- [matrix-] representation. Left in-
set shows the number of molecules and atoms (of one spin-
state). Right inset is a magnification for 〈n̂k0

〉, to illustrate
the statistical uncertainty in the stochastic sampling (shaded
regions are ±standard deviations ) and the accurate agree-
ment with the result of (8) (yellow) dashed line (also repre-
senting 〈m̂†

k0
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〉 since their matrix representations are iden-
tical). Widest (light gray) region is for 〈m̂†
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dark gray region is for 〈n̂k0
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through a system of SDE, which host an infinite gauge
freedom for a particular problem, while fulfilling a con-
straint from the second order derivatives in the FPE
(author?) [13]. We give a specific (simple) example of
(Îto) SDE (dimensionless form λ̇ = dλ/dτ, τ = t/t0 and
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The stochastic complex Gaussian noises ζj obeys
〈ζj (τ) ζj′ (τ ′)〉 = 0,
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= δj,j′δ (τ − τ ′). For

ζj ≡ 0 (6) is equivalent to PMFT [see e.g. (23) in (au-
thor?) [6]]. (In practise we use Stratonovich calculus
(author?) [13]). Performing stochastic sampling 〈...〉S
of higher order (γ > 1) moments follow a procedure
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The stochastic sampling assumes well behaved distribu-
tions (fast decaying tails), such that any boundary terms
could have been neglected obtaining the FPE. However,
for some bosonic (author?) [14] as well as fermionic
(author?) [15] applications, sampling problems have oc-
curred, accompanied by spikes in observables, when tails
did not decay enough for a correspondingly high order
moment. Here (4) allows (numerical) checks of a higher
order moment (author?) [16].
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